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coupled-line impedance around the center of
coupled lines and by optimizing coupling coeffi-
cient distribution. The design method of the hy-
brid coupler  and experimental results of a Ku-
band 4-way power combining network are pre-
sented.

CONFIGURATION

A block diagram of the 4-way power com-
bining network is shown in Figure 1. Four input
signals are combined with three 3dB hybrid cou-
plers. The configuration of the 3dB hybrid cou-
pler using impedance-transforming nonuniform
coupled transmission-lines is shown in Figure 2.
Nonuniform coupled transmission-lines are em-
ployed in order to avoid discontinuity effect which
degrades the performance of hybrid coupler in high
frequency bands. Nonuniform coupling is obtained
by varying the width W and the offset value S of
each inner conductor continuously along the lon-
gitudinal direction x.

The coupled-line impedance ZC(x) and the
coupling coefficient K(x) at position x on the non-

Figure 1.  4-Way Power Combining Network

ABSTRACT

A compact Ku-band power combining net-
work with a combining loss less than 0.45dB has
been developed using rectangular coaxial line tech-
nology. Novel hybrid couplers using impedance-
transforming nonuniform coupled transmission-
lines are employed as power combiners to reduce
the degradation in the combining network perfor-
mance due to manufacturing inaccuracy.

INTRODUCTION

In the C-band and below, rectangular coaxial
line technology is useful to realize compact, light-
weight and low-loss beam-forming networks
(BFNs) and power combining networks [1][2].
But, in the X-band and above, degradation in rect-
angular coaxial line device performance due to
manufacturing inaccuracy becomes a serious prob-
lem because the dimension of a rectangular co-
axial line cross section should be designed very
small to avoid excitation of higher order propaga-
tion modes. Consequently, most of low-loss BFNs
and power combining networks in these frequency
bands are designed using waveguide technology
[2][3].

This paper proposes a Ku-band compact and
low-loss 4-way power combining network using
rectangular coaxial line technology. The network
consists of three novel hybrid couplers using im-
pedance-transforming nonuniform coupled trans-
mission-lines. These transmission-lines can reduce
the degradation in the hybrid coupler performance
due to manufacturing inaccuracy by lowering the
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uniform coupled transmission-lines are defined by:
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where Z
e
(x) and Z

o
(x) are even and odd mode char-

acteristic impedances of the coupled lines, respec-
tively. In the impedance-transforming nonuniform
coupled transmission-lines, both Zc and K are var-
ied continuously along the longitudinal direction
x, and the performance degradation due to manu-
facturing inaccuracy can be reduced by lowering
the impedance Zc around the center of coupled
lines and by optimizing coupling coefficient dis-
tribution K(x).

Zc has the lowest value at the center of the
coupled lines (x=0). The nonuniform coupled
transmission-lines operate as impedance trans-
formers which match the lowered impedance
around the coupled line center with input/output
impedance Z

L
 at the coupled line ends. By lower-

ing the impedance Zc around the coupled line cen-
ter, the conductor width W and conductor gap d
can be enlarged all along the coupled lines and,
therefore, the performance degradation due to
manufacturing inaccuracy can be reduced.

 DESIGN

In order to simplify the design, multisection
coupled transmission-lines with reduced sensitiv-
ity to manufacturing inaccuracy are designed by
lowering impedance and optimizing coupling co-
efficient distribution first, and then the coupling
distribution K(x) and impedance distributions
Zc(x) of the nonuniform coupled transmission-
lines are derived by tapering the multisection
coupled transmission-lines. Figure 3 shows an
equivalent circuit of multisection coupled trans-
mission-lines. The center coupled section is de-
signed to have lowest impedance Zc

N
 and the other

sections are designed to operate as quarter wave-
length impedance transformers which can  match
Zc

N
 with input/output impedance Z

L
. The imped-

ance of each section is determined by the imped-
ance matching condition. In the case of N=3, the
condition is given by :

Z Zc Zc ZcL 2 1
2

3⋅ = ⋅2                                  (3)

The coupling characterist ic of the
multisection coupled transmission-lines can be
analyzed by the even and odd mode model [4].
For N=3, a relation between the coupling of the
entire coupler, K

0
,
 
and the coupling coefficient of

each section, K
i
,
 
is give by:
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Equation (4) is transformed to

K
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0
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where α 1
 and α 2

 are higher order terms of K
1
, K

2

and K
3
. Equation (5) indicates that K

2 
has nega-

Figure 2.  3dB Hybrid Coupler
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tive contribution to the coupling K
0
, and then the

deviation of coupling K
0
 caused by errors in K

1
,

K
2
 and K

3
 can be partially canceled if all errors

have the same sign.  Because an error in conduc-
tor gap d causes the same sign errors in K

1
, K

2
,

K
3
,  a proper of choice of the coupling coefficients

K
1
, K

2
 and K

3
 will reduce the deviation of K

0
 due

to the manufacturing inaccuracy of d.
To avoid the performance degradation

caused by step discontinuities between uniform
coupled sections, the designed multisection
coupled transmission-lines are transformed into
nonuniform coupled transmission-lines[5]. Figure
4 shows a designed distribution of Zc(x) and K(x),
and Figure 5 shows the designed performance of
the hybrid. The physical dimensions W(x) and
S(x) are determined by using rectangular bound-
ary division method[6]. Coupling deviations
caused by errors in d and S are estimated for the
designed hybrid coupler and a conventional quar-

ter wavelength uniform coupled line hybrid cou-
pler. Table I shows the comparison of the coupling
deviations. The coupling deviation is reduced to
less than 30% of that in conventional  one.
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Figure 4.  Designed Distribution of Zc(x) and
K(x)

Figure 5.  Designed Performance of 3dB Hybrid
Coupler

Table I
Comparison of Coupling Deviation

(Designed Coupling Ko=-3dB, Z0=50ohm)

Figure6.  Ku-band 4-Way Power Combining Net-
work

 EXPERIMENTAL RESULTS

Figure 6 shows a photograph of the fabri-
cated Ku-band 4-way power combining network.
Figure 7 shows the measured performance includ-
ing input and output connectors. The combining
amplitude and phase errors are less than 0.3dB
and 5 degrees, respectively, in the 7% frequency
band. Figure 8 shows the estimated combining loss
using the measured performance of the combin-
ing network. A combining loss less than 0.45dB
(a combining efficiency greater than 90%) is ob-
tained in the 7% frequency band.
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Figure 7.  Measured Performance: (a) Amplitude
Characteristic. (b) Phase Characteristic.

Figure 8.  Estimated Combining Loss

CONCLUSION

A compact and low-loss Ku-band power
combining network using rectangular coaxial line
technology was presented. Novel hybrid couplers
using impedance-transforming nonuniform
coupled transmission-lines are employed as power
combiners to reduce the degradation in combin-
ing network performance due to manufacturing
inaccuracy. A compact size power combining net-
work with a combining loss less than 0.45dB has
been realized.
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